Arthroscopic treatment of the atraumatic shoulder instability: a case series with two-year follow-up evaluation

Enrico Gervasi
Enrico Sebastiani
Enrico Cautero
Alessandro Spicuzza

Department of Orthopaedics and Traumatology,
Ospedale Civile di Latisana (UD),Italy

Corresponding author:
Enrico Sebastiani
Department of Orthopaedics and Traumatology,
Ospedale Civile di Latisana
Via Sabbonera 45
33053 Latisana (UD), Italy
E-mail: eseba@hotmail.it

Summary

Background: The purpose of this work is to evaluate the results of arthroscopic capsulolabroplasty in patients affected by atraumatic shoulder instability (ASI).

Methods: A retrospective review was performed of 10 patients (7 women and 3 men) who underwent arthroscopic treatment of symptomatic ASI. Mean age at evaluation was 27.9 (19-35) years and the mean follow-up was 23.3 (12-37) months. We evaluated recurrence rate, range of movement, apprehension and relocation tests, hyperlaxity, and sport activity. The ASES score, the Rowe score, the Simple Shoulder Test (SST) and Visual Analogue Scale (VAS) were also used as outcomes measure.

Results: None of the patients experienced episodes of dislocation or subluxation after surgery. The apprehension and relocation tests produced positive results in 2 patients. Six out of 10 patients reported apprehension with the arm in specific positions. The ASES mean score was 93.4 (55-100); the Rowe mean score was 85.5 (70-100); the SST mean score was 9.1 (5.8-10). On average, external rotation is reduced by 10° in adduction, and by 8° in abduction in 6 out of 10 patients; internal rotation is reduced on average by 6.6° in abduction with the arm abducted, and was overall limited in 6 out of 10 patients.

Conclusions: Arthroscopic capsulolabraloplasty ensures excellent results in patients showing atraumatic shoulder instability in terms of recurrence. Still, an underlying insecurity persists and the risk of residual stiffness is tangible.

Level of evidence: V.

Key Words: atraumatic shoulder instability, multidirectional shoulder instability, capsulolabral reconstruction, AMBRII.

Introduction

The majority of cases reported in the literature and defined as “multidirectional instability” actually are episodes of unidirectional instability in patients with hyperlaxity, which corresponds to about 30% of the instability cases1. The dynamic of the first episode of dislocation – whether or not as a direct consequence of a trauma – is crucial in the understanding of the instability: most of the classification systems, in fact, takes into consideration the etiology of the issue2. Thanks to a study conducted by Kuroda et al. on 573 shoulders in 341 patients, we know that an atraumatic instability, if not treated, shows spontaneous recovery only in 8.7% of cases3. Certainly, the initial therapeutic approach has to be conservative, consisting of reinforcement of the scapular stabilizers, cuff, and deltoid, and proprioceptive exercises4. Unfortunately, physiotherapy alone may lead to unsatisfactory results and, according to a recent meta-analysis5, about 20% of the patients require surgical treatment. The most common surgical procedures to treat multidirectional instability are capsuloligamentous techniques, which include open inferior capsular shift, arthroscopic plication and thermal capsulorraphy6. Thermal capsulorraphy has progressively been abandoned. Unfortunately, the identification of the actual results of a rehabilitative or surgical treatment can be misleading, since studies of patients with multidirectional instability include both subjects with traumatic and atraumatic instability. Recently, Katthagen et al.7 also made the same observation in the field of posterior instability. Our work aims at evaluating the outcomes of patients who underwent surgery for purely atraumatic shoulder instability with a 2-year follow-up.

Methods

We retrospectively recruited 12 consecutive patients who underwent arthroscopic shoulder stabilization
due to multidirectional atraumatic instability. All arthroscopic stabilization procedures performed between January 2013 and December 2015 in the Ospe-
dale Civile of Latisana (UD), Italy, by the senior
Author (E. G.).

Excluded from the study were patients whose first dislocation occurred as a consequence of a non-neg-
ligible energy trauma; whose instability was due to
overhead sports; who have already undergone
surgery on the same shoulder; who received only an-
terior or only posterior repair of the labral capsular
complex; who showed chondral lesions; on whom
who suffered the dislocation because of head over-
head sporting activity.

Included from the study were patients whose first dis-
location occurred as a consequence of a daily life
movement or a minor trauma; whose capsulolabro-
plasty treated both the anterior and the posterior
sides (straddling the 6 o’clock position); with multi-
directional instabilities; constitutionally lax.

It was not possible to contact two patients. Ten pa-
tients (83% of the total) were clinically re-evaluated –
7 women and 3 men with an mean age at evaluation of
27.9 years (19-35), and a mean age at surgery of
25.8 years (17-33). All patients had followed specific
rehabilitation protocols for at least 6 months obtaining
such unsatisfying results to require further surgery.
Procedures were performed in arthroscopy, in the lat-
eral decubitus position, by using on average 4.6 an-
chor-sutures for each patients (3-6); in one case we
associated remplissage, in another one, we associat-
ed a SLAP lesion repair. In four cases the glenoid
labrum did not show lesions at the time of diagnostic
arthroscopy. In no cases rotator interval closure was
performed. During the post-operative period, patients
spent 30 days wearing a mini-sling, and further 30

days wearing it just at night. The average follow-up
was 23.3 months (12-37).

We evaluated range of movement, apprehension and
relocation tests, hyperlaxity, sport activity, recurrence
rate. Four clinical scoring systems were administered:
the American Shoulder and Elbow Surgeons Stan-
dardized Shoulder Assessment Form (ASES)⁸, the
Rowe score, the Simple Shoulder Test (SST)⁹, a Vi-

sual Analogue Scale (VAS). We were able to collect
TC-3D pre-operative exams of all patients, and we
calculated the glenoid bone loss using the “PICO”
method.

This research has been conduct ethically according to international standards¹⁰.

Results

The first dislocation occurred at a mean age of 18.7
years (5-26). No case required external manoeuvres
to reduce the first displacement. Six patients reported
getting the feeling that the humeral head exited the
joint anteriorly, while the other 4 patients were not
aware of the direction of the dislocation. After the first
episode, the incidence rate of the successive disloca-
tions was very variable: from only one episode (one
case), to more than five episodes a day (the most un-
stable case) (Tab. 1). Three out of 10 patients were
treated at the ER to reduce the dislocation, but only
following the first episode. Five out of 10 patients re-
ported contralateral shoulder uninstability.

Eight patients showed symptoms of hyperlaxity ac-

Table I. Patients data.

<table>
<thead>
<tr>
<th>Patient</th>
<th>First dislocation event</th>
<th>Age at first dislocation</th>
<th>Year(s) between dislocation and surgery</th>
<th>Dislocations frequency</th>
<th>Subluxation frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wearing a backpack</td>
<td>15</td>
<td>9</td>
<td>5 a day</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>During the night</td>
<td>5</td>
<td>17</td>
<td>2 a month</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Stretching while studying</td>
<td>26</td>
<td>3</td>
<td>1 a day</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Table tennis slam dunk</td>
<td>21</td>
<td>2</td>
<td>5 in all</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>During elevation and extra-rotation, while playing basketball (no trauma)</td>
<td>15</td>
<td>2</td>
<td>4 in all</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Tightening a pole in the snow</td>
<td>25</td>
<td>2</td>
<td>10 in all</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Climbing</td>
<td>26</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Moving a chair</td>
<td>12</td>
<td>21</td>
<td>1 a week</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Hitting a tennis forehand</td>
<td>20</td>
<td>11</td>
<td>1 in all</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Doing push-ups at the gym</td>
<td>22</td>
<td>4</td>
<td>3 a week</td>
<td></td>
</tr>
</tbody>
</table>
The mean ASES score was 93.4 (55-100); the mean Rowe score was 85.5 (70-100); and the mean SST score was 9.1 (5.8-10).

One patient rates its pain 8 according to the VAS, mainly in the evening after carrying out particularly heavy tasks during the day. Other patients do not report significant pain in the operated shoulder; mean VAS score was 1.5 (0-8).

The apprehension and relocation tests produced positive results in 2 patients, mild results in 2, and negative results in 6.

Six out of 10 patients reported apprehension with the arm in specific positions as resulted in the Rowe Score.

All patients experienced full recovery of shoulder elevation and abduction, except for 1 subject who shows a 40° difference compared to the contralateral limb. Three patients are slightly stiffer compared to the contralateral side in internal rotation (man on the back), while in external rotation in adduction, 3 patients show a marked stiffness (Fig. 1) (20°- 40° difference), and 3 patients show a mild stiffness (5°). With the arm abducted to 90°, 5 patients show a limitation of internal rotation (1 of 30°, 2 of 10°, 2 of 5°), while in external rotation, 4 patients show a lower articular width: 1 of 30°, 2 of 20°, and 1 of 10°.

On average, external rotation is reduced by 10° in adduction, and by 8° in abduction in 6 out of 10 patients; internal rotation is reduced on average by 6.6° in adduction, and was overall limited in 6 out of 10 patients (Tab. II).

None of the patients shows sensory or motor deficits of the axillary nerve, and in no case signs of infection, superficial or deep, did emerge.

Among the ten TC-3D exams retrieved, just one showed glenoid bone loss (equal to 6.1% of the surface area). The apprehension test of the patient in question produced a positive result; she suffered one dislocation each week prior to surgery, and 21 years passed between the first episode of dislocation and surgery. This interval between the first dislocation and surgery was the longest in the entire study (Tab. I); other long intervals were of 17, 11 or 9 years.

Discussion

An atraumatic dislocation is caused by a low kinetic energy, which in standard conditions would not result in the humerus dislocation. Laxity, instead, is a generalised tissue characteristic that may or may not be related to the instability; likely, it plays a role in predisposing to an atraumatic instability12, but it is not an absolute condition.

Both in our study and in the one conducted by Kuroda et al.3, not all atraumatic patients show signs of generalised hyperlaxity. Moreover, constitutional hyperlaxity has no direct connection to apprehension during the post-operative period: between the 2 patients who did not fit the hyperlaxity criteria, 1 shows apprehension while the other does not.

The most used term in literature as opposed to traumatic instability is "multidirectional"; studies that examine these patients, though, have wide inclusion criteria: they include traumatic and atraumatic patients, hyper lax and not hyper lax patients, as well as subjects treated with different surgical techniques. That is because they suffer the absence of a standard definition of multidirectional instability in literature13. Al-
though all the patients are classified based on their medical history, physical examination, under anesthesia and arthroscopic evaluations, the wide range of reported lesions indicates that the etiology of the multidirectional instability is multi-factorial and variable14,15. It is therefore possible that different pathologies, with different etiologies, are gathered under the same name. By considering only the presence or absence of hyperlaxity, we would not establish a good distinction, since hyperlaxity can be present in both traumatic and atraumatic patients and instability can have different directions16. For these reasons, we focused on one aspect of the pathology: the atraumatic onset. In literature, this aspect is rarely considered on its own, but it can be the key to reduce the variables under investigation.

Atraumatic shoulder instability affects a small group of patients: Rowe’s classic study shows that 4% of instability cases can be classifiable as atraumatic, while 96% has a traumatic root cause17. The distinction between instability of traumatic origin and instability of atraumatic origin is extremely important, to the extent that the majority of classifications considers it; the problem is that the distinction between these two instabilities is not always clear18. We need to consider the mechanism that determined the first dislocation, since atraumatic recurrences due to anatomical lesions (capsuloligamentous or bone lesions) or neuromuscular imbalances caused by recurrent dislocations can arise even after traumatic dislocations. Even after the first atraumatic dislocation, or its recurrences, anatomical lesions can arise; considering the long levers involved, small forces are sufficient to cause ligament detachment19. For these reasons, excluded from the study were patients with first-time traumatic dislocation, while we included patients with capsuloligamentous lesions. The recruited patients suffered from what we could define as a “Low Energy Dislocation” (LED). In LED cases, low kinetic energies cause the first episode of dislocation/subdislocation: the most part occurred while doing activities of daily living (ex. wearing a backpack, moving a chair), others due to an external factor that would have never cause a dislocation (ex. tennis forehand).

When reviewing their results on 43 athletes’ shoulders, Baker et al.14 noted similar outcomes in terms of clinical scores and stability in patients with traumatic and atraumatic onsets. The number of patients in a group or in the other is comparable (21 atraumatic, 22 traumatic). They classified into the atraumatic group patients who “could not recall a traumatic injury to their shoulder”. The fact that all the included patients were athletes (of which 52% doing over-head sports) can suggest that the atraumatic onset was actually the result of repeated micro-traumas occurred during sporting gestures: acquired instability in overstressed shoulder (AIOS). This group of patients has completely different characteristics compared with this study.

In order to avoid falling into the group called AIOS, we excluded patients who suffered the dislocation because of over-head sporting activity.

Raynor et al.20 compared the outcomes of an arthroscopic pancapsular capsulorrhaphy with suture anchors for the treatment of patients with atraumatic and traumatic multidirectional instability. At final follow-up, at least 2 years out from surgery, patients with traumatic onsets demonstrated higher scores, fewer subluxations and were significantly more satisfied than those with atraumatic onsets. The Authors of a recent article21 evaluated the outcomes of 50 patients with atraumatic symptomatic multidirectional instability treated with arthroscopic

Table II. Degrees of difference between the operated limb and the contralateral one in different directions are represented. Adduction position: elbow leaning on the side. 90° abduction: shoulder abducted to 90°. Regarding the internal rotation in adduction, only subjects with a difference compared to the contralateral side (YES) are reported.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Elevation(°)</th>
<th>Abduction(°)</th>
<th>Internal rotation</th>
<th>External rotation(°)</th>
<th>Internal rotation(°)</th>
<th>External rotation(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>40</td>
<td>YES</td>
<td>20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>YES</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>NO</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>NO</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>NO</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>NO</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>YES</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>NO</td>
<td>5</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>NO</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>NO</td>
<td>40</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>
plication. They did not include patients with labral or capsular lesions; the surgical technique consists of capsular plications of the antero-inferior portion only, using No. 1 polydioxanone sutures. At a 5-year follow-up, about 83% of the patients achieves a good - excellent Oxford Instability Score. Among the 14 patients described by the Authors as “posterior instability”, 2 experienced a recurrence. However, their 4% recurrence rate is lower than the one reported in the literature.

The thin and exuberant capsular tissue usually located in this kind of patients can be due to a muscle imbalance: when the dynamic restraints are not working, the capsule remains the first stabilizer against the translating forces, and it can result in fatigue failure. In the surgical treatment of this type of patient, in addition to retensioning the capsuloligamentous complex, it is essential to support also the shoulder neuromotor control, the main pathological element responsible for the atraumatic instability. Treatment must address the entire inferior portion of the articulation, from the anterior to the posterior part. A “bumper” must be re-created along the subequatorial glenoid rim to increase the depth of the glenoid and facilitate concavity-compression. Therefore, we excluded from the study all the procedures where a capsulolabroplasty was performed only antero-inferiorly or only postero-inferiorly.

According to Stanmore classification, atraumatic instabilities have to be divided into two groups: instabilities caused by structural issues, and instabilities due to muscle patterning disorders (non-structural). The distinction between the two groups is often not clear; therefore, the Authors suggest using electromyography as diagnostic instrument. To this day, though, it has not being proved how the electromyography could be so useful in these cases, since there is no clear consensus on cases of glenohumeral instability, neither in terms of muscle activity nor in terms of recruitment timing. For this reason, we consider both groups as a single one, since we believe that the atraumaticity and the neuromuscular dysfunction are strictly interrelated, and that the electromyography cannot draw a clear boundary line.

We had no cases of recurrences: dislocation or subluxation. In studies that evaluate patients with multidirectional instabilities using arthroscopic techniques, the incidence rate of dislocation or subluxation recurrences is low (6-7.8%); similar results can also be obtained with open procedures, as the open capsular shift, with a 7.5-9.9% incidence rate of recurrences. The recurrences reported in literature were not high neither with the first arthroscopic methodologies, as the Caspari’s one. Today, therefore, the recurrence cannot be considered as the main outcome, but it is necessary to evaluate further aspects.

Sixty percent of our patients reports apprehension during specific movements of the superior limb; this factor leads us to believe that the capsulolabroplasty and the creation of a “bumper” using capsular tissue ensure a good stability, but it seems insufficient in helping the patients to regain a good neuromotor and proprioceptive control.

None of the patients complained about the joint range of motion reduction; all the patients were able to carry out daily and work activities without noticeable effort. Residual articular limitation due to surgery, even small, affected a significant percentage of patients (60%). Moreover, since the majority of patients had a constitutional ligament laxity, the articular width is minor compared to the contralateral limb (Fig. 2), even if it would fall into the normal range. During the post-operative period, all patients were advised not to force the full joint recovery until a year after surgery, as suggested by Matsen; this factor, together with capsular plications, can lead to a residual stiffness.

New surgical approaches that need a milder tightening of the joint capsule, in order not to lose ROM, and firmly stimulate the proprioceptive-neuromuscular system to reduce patient apprehension should be considered in the future.

The originality of our study lies in the fact that it investigates surgical results of shoulder instabilities by examining the etiology of the problem (atraumatic), rather than its direction (multidirectional) or the constitutional component (laxity).

The main limitation of this study is its retrospective nature. We have no pre-operative data regarding scores, ROM or clinical tests. By anamnesis and surgical records, we could be able to collect just: frequency of dislocation/subluxation, age at first dislocation, years between first dislocation and surgery, constitutional ligament laxity, the articular width is minor compared to the contralateral limb (Fig. 2), even if it would fall into the normal range. During the post-operative period, all patients were advised not to force the full joint recovery until a year after surgery, as suggested by Matsen; this factor, together with capsular plications, can lead to a residual stiffness.

The main limitation of this study is its retrospective nature. We have no pre-operative data regarding scores, ROM or clinical tests. By anamnesis and surgical records, we could be able to collect just: frequency of dislocation/subluxation, age at first dislocation, years between first dislocation and surgery, constitutional ligament laxity, the articular width is minor compared to the contralateral limb (Fig. 2), even if it would fall into the normal range. During the post-operative period, all patients were advised not to force the full joint recovery until a year after surgery, as suggested by Matsen; this factor, together with capsular plications, can lead to a residual stiffness.

The Authors declare no conflicts of interest concerning this article.
References

