Insight in spastic musculoskeletal structures in cerebral palsy: impaired or compensatory structural changes?

Luigi Di Lorenzo1,2
Alfonso Maria Forte2
Francesco Forte2

1 Rehabilitation Unit, Movement Disorders Treatment C., Neuroscience Department, "RUMMO" Hospital, Benevento, Italy
2 Biomedical Research Centre, Gruppo Forte Salerno, Italy

Dear Editor,

we read with great interest the recently published paper by Gagliano et al.1 which raises several interesting points for discussion and we would like to commend the authors for mainly “thinking outside the box of a basic researcher”. The authors studied the effect of spasticity on tendons from the gracilis and semitendinosus muscles from cerebral palsy (CP) and healthy subjects, observing an increased cellularity, cell rounding, and hypervascularity and lipid degeneration in tendon samples from CP patients. They report evidences of an increased collagen content and an increased glycosaminoglycan content in CP tendons, concluding that these results were a consequence of spasticity, which may be considered a chronic, persisting and repetitive mechanical stimulus 8. In this contest1, a casual reader might think to base the “core” of CP management on spasticity treatment if assuming that it directly influence the ECM composition. Indeed, these adaptations seem to be reversible and Langevin indicates that tissue contraction and relaxation may result in a dynamic, body-wide pattern of cellular activity9. A constrained movement pattern during the work task not only leads to a restricted load distribution between muscles but could also have deleterious effects on specific subsets of muscle fibers. Altered movement patterns of CP patients have already been suggested not to be purely pathological2,6 and understanding of these characteristics and how structure and mechanics interact can help understanding pathologies of movement. In conclusion, from a clinical point of view we hope that our letter should widen the lens rather than narrow the focus because we believe that spastic myotendinous pattern and impaired structural changes in spastic musculoskeletal structures should have to be studied together and possibly described as compensatory and partially reversible structural changes in an altered motor pattern. This because in compensation model, we expect muscle that are thought to be impaired to still have the ability to performance.

References
1. Gagliano N, Menon A, Martinelli C, et al. Tendon structure and extracellular matrix components are affected by spas-

Insight in spastic musculoskeletal structures in cerebral palsy: impaired or compensatory structural changes?

Dear Editor,

We have read with great interest the letter of Di Lorenzo and coauthors and we thank for the opportunity to write about our research focused on tendons during CP. Many data are available on tendon modifications under different conditions (pathologies, exercises, etc. ...) \(^1\) - \(^3\), but very few data are available on the effects of CP-induced spasticity directly on tendon tissue \(^4\) - \(^5\). Therefore our work has been designed to clarify the structure of tendons in this pathological condition.

We realize such a strong interest Di Lorenzo and coauthors for the muscle-skeletal tissues. This is clearly demonstrated by the cited references in their letter, which are conversely mostly related to studies on muscle tissue modifications in different conditions and, especially, in cerebral palsy (CP).

As Di Lorenzo and coauthors emphasize, three main structures define the mechanics of the musculoskeletal system: skeleton-muscle, connective tissue and bone. \textit{In vivo} all these structures interact with each others, adapting the body to the mechanics and viceversa.

As a consequence, we completely agree with a multidisciplinary approach to study the effects of CP on the musculoskeletal unit, involving different competencies.

Accordingly, we also agree that a project investigating the alterations of CP in both skeletal muscle and tendons, possibly associated with functional, clinical measures of disability and anatomical architecture of muscles and tendons via ultrasound scanning, would be a very interesting study providing a real comprehensive and deep description of this problem combining biological and clinical approaches.

But this was not the aim of our study, and could be a matter of a new and different study.

In this context we want to point out the statement reported by Di Lorenzo and coauthors that "Heinemeyer studies reported that the tendon tissue response, contrary to muscle, is independent of stress levels/contraction type, indicating that this tissue is less sensitive than skeletal muscle to differences in mechanical stimulus".

We disagree with this statement since, despite muscle and tendon can be considered an unique unit, these two tissues are characterized by different embryologic origins, cell types, structure and functions.

Furthermore, several papers showed that mechanical loadings, different in amplitude or in type of strain, elicit different effects on tendon homeostasis \(^6\) - \(^9\).

Di Lorenzo and coauthors consider as misleading our statement that "CP induces relevant modifications of tendons at the molecular level, possibly leading to modifications in order to respond to the increased mechanical loading and increased functional demands induced by spasticity".

Spasticity should be considered as an input acting on tendons, and therefore as a mechanical load very likely eliciting some modifications on tendon connective tissue, according to many previous studies showing that tendons are able to respond to different mechanical loading by modifying their morphological and biomechanical properties to adapt to functional demand.

Our data clearly show that the morphological modifications induced by CP-related spasticity are represented by increased collagen and glycosaminoglycans con-
tent, hypercellularity, cell rounding, increased vascularity and lipoid degeneration. Interestingly, we show that this modifications induced on tendons by CP-related spasticity are not simply physiological adaptive responses. In fact, some of the described characteristics in tendons from CP patients are typically occurring in tendinopathy, and this is an unreported finding in the current literature.

Finally we are aware that “thinking outside the box of a basic researcher” is the correct approach, but we are strongly convinced that also our “basic” results could be relevant and, although they are focused on the biology of tendon connective tissue, they contribute to better understand the complexity of CP effects on the musculoskeletal system, especially on tendons.

References