Technical note

Muscles, Ligaments and Tendons Journal – Basic principles and recommendations in clinical and field Science Research: 2016 Update

Johnny Padulo¹,²
Francesco Oliva³
Antonio Frizziero⁴
Nicola Maffulli⁵,⁶

¹ University e-Campus, Novedrate, Italy
² Faculty of Kinesiology, University of Split, Split, Croatia
³ Department of Orthopaedics and Traumatology, University of Rome "Tor Vergata", Rome, Italy
⁴ Department of Physical and Rehabilitation Medicine, University of Padua, Padua, Italy
⁵ Head of Department of Orthopaedic and Trauma Surgery, University of Salerno, Italy
⁶ Centre for Sports and Exercise Medicine, Queen Mary University of London Bart and The London School of Medicine and Dentistry, Mile End Hospital London, UK

Corresponding author:
Johnny Padulo
University e-Campus
Via Isimbardi, 10
22060 Novedrate, Italy
E-mail: sportcinetic@gmail.com

Summary

The proper design and implementation of a study as well as a balanced and well-supported evaluation and interpretation of its main findings are of crucial importance when reporting and disseminating research. Also accountability, funding acknowledgement and adequately declaring any conflict of interest play a major role in science. Since the Muscles, Ligaments and Tendons Journal (MLTJ) is committed to the highest scientific and ethical standards, we encourage all Authors to take into account ethical aspects and international laws, providing a specific guideline for researchers working within the vast, interdisciplinary field of “Clinical and Sport - Science Research”. Experiments are routinely designed and collected from investigators for various purposes, but, unfortunately, are sometimes reported with a lack of details that could, instead, facilitate their reproducibility; therefore, the current Update specifically refers to:

1. the most important ethical guidelines in the field of sports sciences, with a focus on the Declaration of Helsinki and its amendments over the years;
2. investigations involving human subjects, and in particular young participants and children;
3. investigations involving animals;
4. investigations involving the use of cell-lines;
5. investigations involving the use of bio-banks;
6. investigations involving subjects in studies concerning doping agents;
7. investigations involving deception;
8. recommendations for studies reporting results obtained from basic science;
9. evidence-based medicine;
10. guideline for standardizing and reporting “walking and running studies/vibration treatment/muscular activity analysis/clinical stabilometry standardization/aerobic – anaerobic exercises”.

Sports ethics

Ethical issues in sports medicine and, more generally speaking, in sports sciences, are unique⁷; because of the same sports context, being highly competitive and demanding, which may put the doctor under pressure. Further, the presence of the triad physician-patient-team³ has replaced the typical dyad doctor-patient and this implies a not easy balance between the single athlete’s interest and the team’s interest⁸. For example, conflicts may arise when doctor has to decide about return to play of the athlete⁹: the team could influence the clinician and force him to opt for a premature return of the athlete. Scientific research is of crucial importance in that it can support clinicians, providing scientific evidences and assisting their deci-
sion-making process, as we will discuss in the following paragraphs and sections.

Ethical guidelines

The most important ethical guidelines in the field of sports sciences are listed in Table 1. Other outstanding ethical codes are those of the United Nations Educational, Scientific and Cultural Organization (UNESCO), the International Federation of Sports Medicine (IFSM) Fédération Internationale de Médecine du Sport (FIMS), among others.

Declaration of Helsinki

Among ethical guidelines, declaration of Helsinki represents an undoubtedly milestone. The World Medical Association (WMA) has revised the Declaration of Helsinki, which in its latest version ensures increased protection for people taking part in medical research, and in particular for vulnerable groups. Table 2 shows the various amendments that have occurred since inception.

Research involving human participants

Research involving human subjects should:
- respect the participant’s rights, safety and well-being;
- be approved by an appropriate ethical committee;
- have a clearly justifiable and properly developed experimental approach (design – statistical analysis), in accordance with the Declaration of Helsinki;
- provide information regarding “funding – sponsor – other potential conflicts of interest (which should be clarified and detailed);
- an adequate compensation and treatment for each participant.

Research involving young participants

- For subjects aged <18 years, the informed consent/assent should be provided with appropriate, written documentation by parent/guardian/tutor;
- informed consent (also for adults) should be exhaustive, clearly readable;

Table 1. The most important ethical guidelines in the field of sports sciences.

<table>
<thead>
<tr>
<th>Year</th>
<th>Ethical guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1947</td>
<td>Nuremberg Code</td>
</tr>
<tr>
<td>1964-on (last revised 2013)</td>
<td>Declaration of Helsinki</td>
</tr>
<tr>
<td>2009-on</td>
<td>Olympic Movement Medical Code</td>
</tr>
</tbody>
</table>

Table 2. A historical outline of the development of the Declaration of Helsinki.

<table>
<thead>
<tr>
<th>Year</th>
<th>Version and changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1964 (June)</td>
<td>1st version, adopted by the 18th WMA General Assembly, Helsinki, Finland</td>
</tr>
<tr>
<td>1975 (October)</td>
<td>1st revision, adopted by the 29th WMA General Assembly, Tokyo, Japan. Approval of the research by an independent Institutional Review Board (IRB); greater emphasis on subject’s safety and well-being</td>
</tr>
<tr>
<td>1983 (October)</td>
<td>2nd revision, adopted by the 35th WMA General Assembly, Venice, Italy. Seeking the consent of minors, where possible</td>
</tr>
<tr>
<td>1989 (September)</td>
<td>3rd revision, adopted by the 41st WMA General Assembly, Hong Kong. Greater importance to IRBs</td>
</tr>
<tr>
<td>1996 (October)</td>
<td>4th revision, adopted by the 46th WMA General Assembly, Somerset West, Republic of South Africa. Great emphasis on placebo and standard of care</td>
</tr>
<tr>
<td>2000 (October)</td>
<td>5th revision, adopted by the 52nd WMA General Assembly, Edinburgh, Scotland. Great emphasis on best research practices, publication ethics and the potential impact of sponsorship</td>
</tr>
<tr>
<td>2002 (October)</td>
<td>Notes of clarification added, adopted by the 53rd WMA General Assembly, Washington DC, USA</td>
</tr>
<tr>
<td>2004 (October)</td>
<td>Notes of clarification added, adopted by the 55th WMA General Assembly, Tokyo, Japan</td>
</tr>
<tr>
<td>2008 (October)</td>
<td>6th revision, adopted by the 59th WMA General Assembly, Seoul, Republic of Korea</td>
</tr>
<tr>
<td>2013 (October)</td>
<td>7th revision, adopted by the 64th WMA General Assembly, Fortaleza, Brazil. Greater accountability, transparency and patient safety</td>
</tr>
</tbody>
</table>

Abbreviations: WMA (World Medical Association).
• issues of privacy and confidentiality (also for adults) should be considered in their broader meaning, that is to say beyond what is strictly legally required (i.e., images video recording, data set with name and surname)\(^9\);
• particular confidentiality is required when the investigator collects data at the worksite or from the internet\(^10\). Unfortunately, the particularly challenging sports climate and environment may exacerbate pressures on clinicians to break patient confidentiality\(^11\).

Research involving animals

Research involving animals should be conducted ethically according to the principles of the Guide for the Care and Use of Laboratory Animals of the Institute for Laboratory Animal Research\(^12\), as subsequently revised and modified by the 8th edition of the Guide for the Care and Use of Laboratory Animals, published in 2010\(^13\) and as suggested in a recently published editorial\(^14\).

The investigator should:
* acquire animals according to the extant legal statutes and regulations;
* ensure the safety and the wellbeing of the animal in terms of adequate housing, feeding, hygienic and comfortable living conditions;
* be assisted by qualified personnel;
* avoid or minimize as much as possible the suffering, discomfort and pain of the animal during the research.

Investigations involving the use of cell lines

Basic science is of crucial importance for the sports disciplines. Researchers should pay attention to the following issues\(^15\):
* cell-line misidentification;
* cell-line contamination with microorganisms;
* cell-line instability, both genetic and phenotypic;
* cell-line development, acquisition, authentication, cryopreservation, transfer between laboratories, and characterization.

Investigations involving the use of bio-banks

Use of bio-banks in the field of sports sciences is currently limited to few studies\(^16,17\), but is increasing. The Authors should comply to the specific ethical, legal, social issues (ELSI) in vigor in their countries\(^18\).

Investigations involving subjects in studies concerning doping agents

Studies involving athletes (both recreational or elite ones) in researches concerning doping agents, practices or behaviors banned by the World Anti-Doping Association (WADA) are particularly challenging in that are delicate. These investigations should be conducted only after the approval of anti-doping organizations, such as the WADA, paying attention not to give advantages to athletes themselves and to avoid a misuse or the results or their application for doping\(^18\).

Investigations involving deception

It has been underlined by some scholars that the current ethical guidelines are generally thought for quantitative studies and tend to overlook qualitative research. This is particularly true for investigations involving deception, such as studies on hooliganism or on sexist or racist attitudes, which have particular difficulties in obtaining the ethical clearance. As suggested by other researchers\(^19\), these investigations may be permissible if:
* are of outstanding importance and have practical implications;
* participants are not be likely to suffer physical, social, or psychological harm;
* the results could not be obtained in any other way.

Recommendations for studies reporting results obtained from basic science

Studies reporting molecular/structural results obtained from basic science should report the data base accession number of the deposited amino acid sequences of proteins or the nucleotide/gene sequences. The data base name should be also detailed [for example, the European Molecular Biology Laboratory (EMBL), GenBank Data Libraries, the Worldwide Protein Data Bank (http://www.wwpdb.org), the RCSB PDB (http://www.pdb.org), the MSD-EBI (http://www.ebi.ac.uk/pdbe/), the PDBj (http://www.pdbj.org), the BMRB (http://www.bmrwisc.edu), or the RCSB EMDB (http://www.em-databank.org), among others].

Evidence-based medicine

• Evidence-based medicine (EBM) is an approach based on a systematic process of review, quality assessment of the medical literature. Classifying the level and the strength of evidence of the empirical findings, it aims at helping clinicians in decision-making and at ensuring the patients an optimal level of medical care and practice at highest level possible\(^20\).
• This expression has subsequently spread to the different medical specialties and branches. As such, evidence-based physiotherapy\(^21\) and evidence-based sports medicine\(^22\).
• It is of crucial importance to critically appraise the study quality using grading systems. The US Preventive Services Task Force (USPSTF) has proposed the following classification: level I (evidence obtained from randomized controlled trials, RCTs, systematic reviews and/or meta-analyses);
Specific issue relevant to the standard procedures and recommendations

- In the era of the EBM, ensuring standardization and reproducibility is crucial. The “minimum information” standard is a new conceptual framework that comprises a set of checklists, protocols and/or guidelines for performing experiments and reporting the resultant, generated data (experimental data) along with essential information about the experiments themselves (metadata or contextual data). If followed, this data recording and reporting standard ensures that the data can be easily accessed, independently verified, analyzed and clearly, unambiguously interpreted by the scientific community. Metadata or “data about data” are, indeed, particularly important in context-sensitive experiments, in that they “capture what happens on the backstage of science, on the trajectory from study conception, design, funding, implementation, and analysis to reporting. Definitions of metadata vary, but they can include the context information surrounding the practice of science, or data generated as one uses a technology, including transactional information about the user”.

- Unfortunately, these data are usually left to the discretion of the Authors or can be sometimes solicited and requested by the journals editors and reviewers.

- In order to standardize the Whole-body vibration studies (according to Rauch et al.29), the following details should be necessarily included: manufacturer (trademark), vibration time (sec/min), passive recovery (sec/min), frequency (Hz), peak-to peak displacement (mm), amplitude (mm), peak acceleration (ms⁻²), root mean squared acceleration (ms²). For the body position (i.e. foot), optimal frequency vibration and optimal vibration load, we invite all Authors to read and to refer to Di Giminiani et al.30-32.

- In order to use a shared and standardized language on postural sway/stabilometric analysis, we invite all Authors to meet with the criteria suggested in “The clinical stabilometry standardization…” by Scoppa et al.33, based on: tool (sample rate at least 50 Hz); the acquisition should not be less than 25 sec.

- For clinical and field setting the temporal pattern variables in walking and running gaits should be included for both acute and chronic effects44. Particularly, several steps must be observed: device calibration (i.e. treadmill), familiarization, warm-up, kinematic analysis, and oxygen consumption.

- In the last years, much attention and many efforts have been dedicated to standardize the methodology for assessing muscular activity. For example, the Surface Electromyography (EMG) for the Non-Invasive Assessment of Muscles (SENIAM) project has put for recommendations that should reduce variability and increase reproducibility, ensuring a major exchange and reuse of data, and, as such, greater co-operation and collaboration among researchers35: the choice of the sensor and its surface electrode (measure - mm/cm), the choice of the muscle and the placement of sensors, the signal processing in terms of sample rate of the EMG device (up 1500 Hz), and data analysis (i.e., root mean squared)36, EMG normalization (% of maximal voluntarily contraction)37, among others.

- Based on exercise physiology, we stimulate all researchers to appropriately use aerobic and anaerobic terms38 to describe the several degrees of exercise intensity: namely, ‘Explosive Efforts’ (in case duration is up to 6 sec), ‘High Intensity Efforts’ (efforts comprised between >6 sec and 1 min), and ‘Endurance Intensive Efforts’ (for exercise bouts longer than 1 min).

Authors are required to confirm (after read and turn up the first guideline) their compliance to the ethical and scientific standards here discussed, by formally citing this editorial within the methods section of their own manuscript. Further, MLTJ welcomes methodological papers, which address to solve those key issues that hamper widespread use of techniques in the field of “Clinical and Sport - Science Research”.

Acknowledgement

We would like to express the deep appreciation to
MD Nicola Luigi Bragazzi for the endless support for this document

Conflict of interests

The Authors declare that they have no conflict of interests regarding the publication of this paper.

References